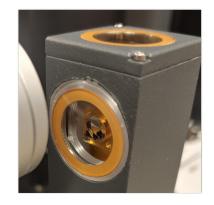

Development of erbium-doped oxide thin films for quantum communication platforms


Thesis Defense - Gregory Grant - Guha Group - September 13, 2024

To the committee of:

Prof. Supratik Guha, Prof. David Awschalom, Dr. F. Joseph Heremans

Thesis Defense Outline

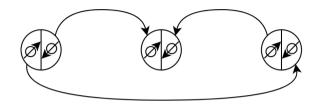
- 1. Discussion on selecting a quantum communication-relevant defect
- 2. Review of erbium energy structure and aspects relevant to our work
- 3. Developing CeO₂ as a host for Er
- 4. Expanding CeO₂ to other substrates for alternative integrations
- 5. Considering other host materials for Er via computational survey
- 6. Conclusions and final remarks

Thesis Defense Outline

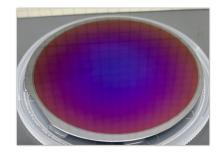
1. Discussion on selecting a quantum communication-relevant defect

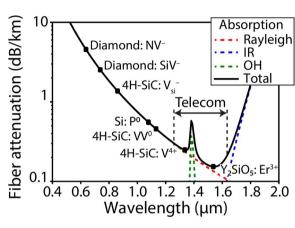
- 2. Review of erbium energy structure and aspects relevant to our work
- 3. Developing CeO₂ as a host for Er
- 4. Expanding CeO₂ to other substrates for alternative integrations
- 5. Considering other host materials for Er via computational survey
- 6. Conclusions and final remarks

The goal of quantum communication



$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$$


Goal: We want to distribute quantum states across long channels, e.g., between cities.


Problem: No-cloning forbids state duplication, so we cannot amplify weak quantum signals

Solution: Quantum repeaters reduce overall loss, but need synchronization between nodes using quantum memory

Implementation: Solid state quantum memory leverages well established fabrication techniques

Attenuation through a fiber optic at varied wavelengths, with the **minimum at 1.5 µm** [2]

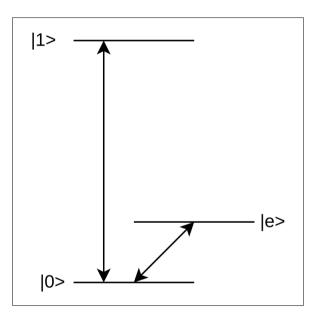
Requirements: A memory qubit must have an energy structure: with a telecom interface and long-coherence storage; preferably in a Si-compatible host

^{[1]:} https://news.uchicago.edu/story/chicago-quantum-network-argonne-pritzker-molecular-engineering-toshiba [2]: Wolfowicz et al, *Nat. Rev. Mat.*, 6.10 (2021)

Designating a quantum memory qubit

Recall Requirements: A memory qubit must have an energy structure with the following:

- A telecom-wavelength transition as an interface
- A long-coherence-time transition as a storage mechanism

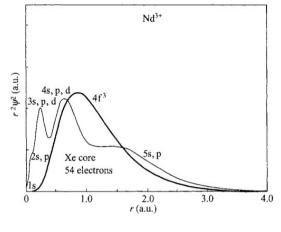

Interface mechanism: Read and write from the storage state; interacts with the environment

- Fast lifetime T₁, telecom wavelengths

Storage mechanism: Keep a state with high fidelity for a long time; isolated from environment

- Long coherence T₂, controllable with driving field

Let's pick a defect to facilitate this.


Archetypal 3-level system

Selecting erbium for quantum memory

Diamond: NV-

Si: Po

4H-SiC: VV

Diamond: SiV-

4H-SiC: V

0.4 0.6 0.8 1.0 1.2 1.4 1.6

Wavelength (µm)

4H-SiC: V.

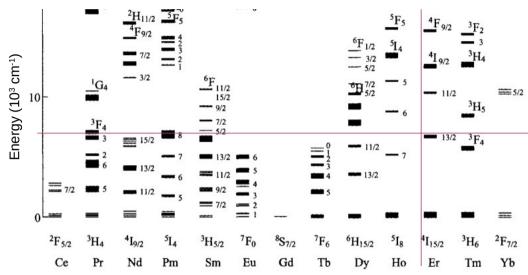
Telecom

Absorption Rayleigh

OH

 Y_2SiO_5 : Er³⁺

Total


Radial wavefunction of Nd³⁺ compared to Xe core charge distribution - note shielded 4f extent [1]

Attenuation through

a fiber optic at varied

wavelengths, with the

minimum at 1.5 μm [2]

Energy structure of R^{3+} :LaF₂ (N.B.: 1538 nm = 6500 cm⁻¹) [1]

Er³⁺ is demonstrated to have long spin and optical quantum coherence times, e.g. 4ms T_{2,opt} in Er:YSO at 2 K [1] and 23ms T_{2.spin} in CaWO₄ at 10 mK [3]

The only downside is that Er is dim.

[3]: Dantec et al, Sci. Adv., 7.51 (2021)

Fiber attenuation (dB/km)

^{[1]:} Liu and Jacquier, Spect. Prop. of Rare Earths, 2005

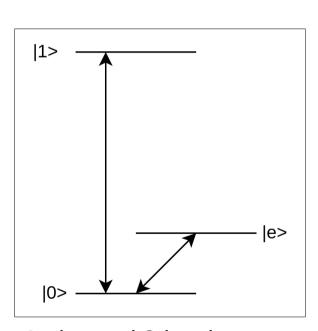
^{[2]:} Wolfowicz et al, Nat. Rev. Mat., 6.10 (2021)

Thesis Defense Outline

- 1. Discussion on selecting a quantum communication-relevant defect
- 2. Review of erbium energy structure and aspects relevant to our work
- 3. Developing CeO₂ as a host for Er
- 4. Expanding CeO₂ to other substrates for alternative integrations
- 5. Considering other host materials for Er via computational survey
- 6. Conclusions and final remarks

Is the erbium energy structure viable?

We wish to identify an archetypal 3-level system within the energy structure of erbium, here via close examination of its Hamiltonian. [1,2]


Starting point: An N-electron atom

$$H = -\frac{\hbar^2}{2m} \sum_{i=1}^{N} \nabla_i^2 - \sum_{i=1}^{N} \frac{Ze^2}{r_i} + \sum_{i < j}^{N} \frac{e^2}{r_{ij}}$$

Refinement: "Central Field" approximation

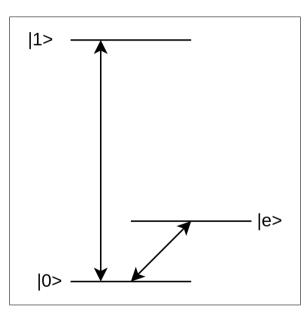
$$H = H_{\text{CF}} + H_c, \quad H_{\text{CF}} = \sum_{i=1}^{N} \left(-\frac{\hbar^2}{2m} \nabla_i^2 + U(r_i) \right)$$

The central field Hamiltonian lets us use hydrogenic wavefunctions as our basis.

Archetypal 3-level system

Working beyond the central field

$$H = H_{\text{CF}} + H_c, \quad H_{\text{CF}} = \sum_{i=1}^{N} \left(-\frac{\hbar^2}{2m} \nabla_i^2 + U(r_i) \right)$$


$$H_c = \sum_{i=1}^{N} \left(-\frac{Ze^2}{r_i} - U(r_i) \right) + \sum_{i>j=1}^{N} \frac{e^2}{r_{ij}}$$

Looking at the terms external to the central field, we find H₁:

$$H_1 = \sum_{i>i-1}^{N} \frac{e^2}{r_{ij}}$$
 (the inter-electron Coulomb potential)

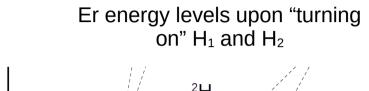
Then we start adding other perturbations, such as spin-orbit:

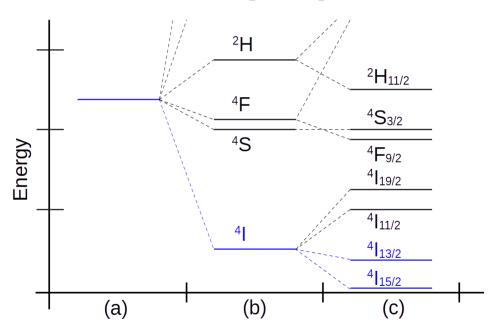
$$H_2 = \sum_{i=1}^{N} \xi(r_i) \boldsymbol{s}_i \cdot \boldsymbol{l}_i, \qquad \xi(r) = \frac{\hbar^2}{2m^2c^2r} \frac{\mathrm{d}U}{\mathrm{d}r}$$

Archetypal 3-level system

Splitting Er states into terms

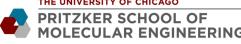
Inter-electron Coulomb potential


$$H_1 = \sum_{i>j=1}^{N} \frac{e^2}{r_{ij}}$$


Spin-orbit coupling potential:

$$H_2 = \sum_{i=1}^{N} \xi(r_i) \boldsymbol{s}_i \cdot \boldsymbol{l}_i, \qquad \xi(r) = \frac{\hbar^2}{2m^2c^2r} \frac{\mathrm{d}U}{\mathrm{d}r}$$

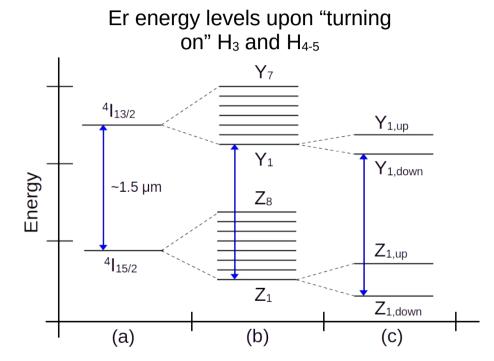
This gives us a framework to discuss electron configurations (using LS coupling here):


$$L = \sum_{i} l_{i} \qquad S = \sum_{i} s_{i} \longrightarrow 2S + 1 L_{J}$$

L is written in spectroscopic notation, so 1=S, 1=P, 2=D, ..., 6=I, ...

Splitting Er terms into crystal field levels

We can apply additional perturbations based on the environment around the Er.

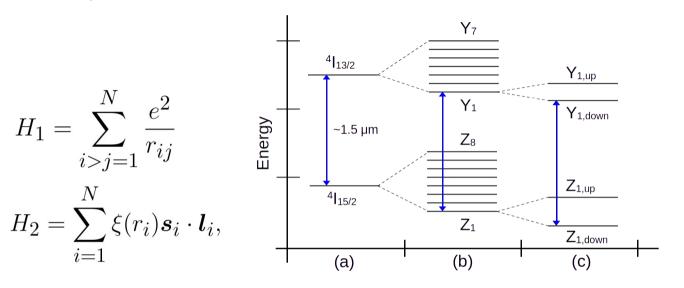

The crystal field (electric potential) perturbation:

$$H_3 = -e\sum_i V_e(r_i, \theta_i, \phi_i)$$

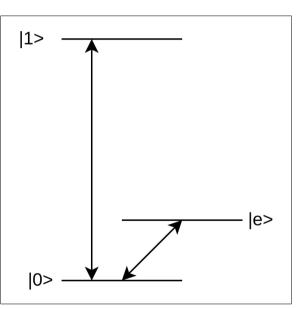
External magnetic field and hyperfine splitting:

$$H_{4-5} = \beta \boldsymbol{B} \cdot \boldsymbol{g} \cdot \boldsymbol{S} + A \boldsymbol{S} \cdot \boldsymbol{I}$$

H₃ in particular splits Er into the "crystal field levels" which are each doubly degenerate.



Comparing Er levels with our archetype

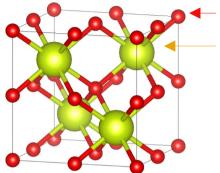


$$H_3 = -e\sum_i V_e(r_i, \theta_i, \phi_i)$$

$$H_{4-5} = \beta \mathbf{B} \cdot \mathbf{g} \cdot \mathbf{S}$$

Working through the Er energy structure, we've found an archetypal qubit level structure in the Zeeman-split Z₁-Y₁ transition!

Archetypal 3-level system

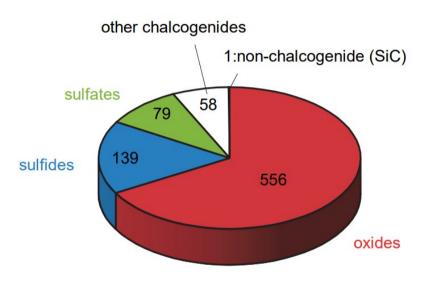

Thesis Defense Outline

- 1. Discussion on selecting a quantum communication-relevant defect
- 2. Review of erbium energy structure and aspects relevant to our work
- 3. Developing CeO₂ as a host for Er
- 4. Expanding CeO₂ to other substrates for alternative integrations
- 5. Considering other host materials for Er via computational survey
- 6. Conclusions and final remarks

Why use CeO₂ to host erbium?

O: 99.8% nuclear spin 0

Ce: 100% nuclear spin 0


Fluorite structure O_h symmetry Ce site a = 5.41 Å (ICDD)

CeO₂ predicted to be an optimal defect host:

- Predicted defect spin T₂ of 47 ms due to low nuclear spin environment [1]
- Wide band gap (\sim 3 eV > 0.8 eV)

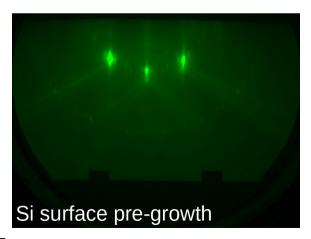
Also a good candidate for growth study:

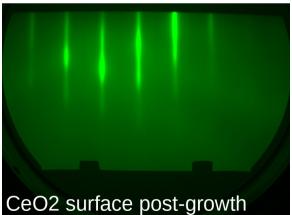
- Straightforward to grow in MBE
- Grows epitaxially on silicon (<0.5% mismatch)
- Lessons learned can transfer to other oxides

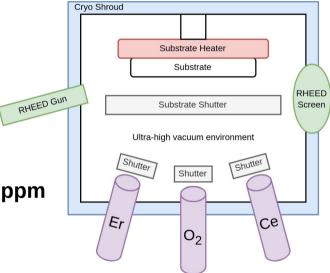
Inventory of stable compounds with theoretical $T_{2,Hahn} > 1$ ms and bandgap above 1 eV [1]

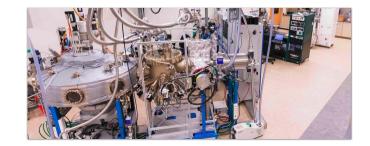
[1]: Kanai et al, *PNAS*, 199(15), e2121808119 (2022)

Growing Er:CeO₂ via MBE

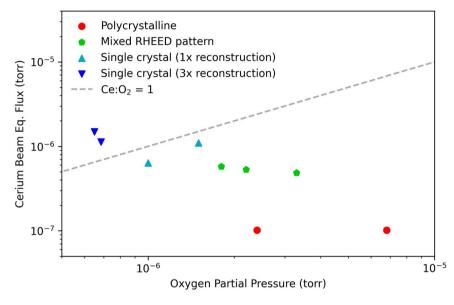


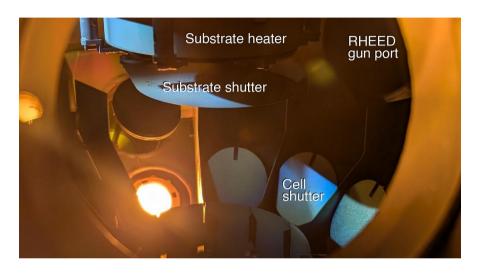

Molecular beam epitaxy (MBE) recipe:

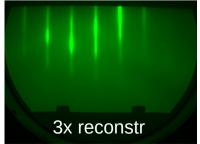

- 1. Start with base growth chamber pressure of 10⁻⁹ torr
- 2. Prepare Si(111) substrate, RCA cleaned with HF step last
- 3. Flash substrate pre-growth for 7x7 surface reconstruction
- 4. Evaporate high-purity cerium and erbium metal; flow oxygen

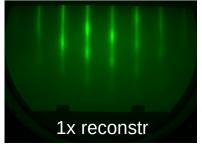

Growth parameters:

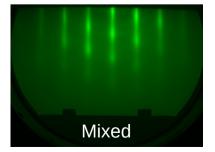
- Growth rate of up to 50-300 nm/hr upon a 670 °C substrate
- Erbium doping controllable via cell temp, from sub-ppm to 100s ppm


Establishing a growth window for CeO₂

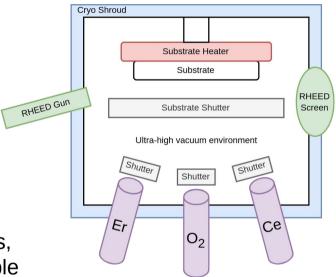







We tune the ratio of Ce and O₂ fluxes for single crystalline growth.

Control of Er doping level during growth



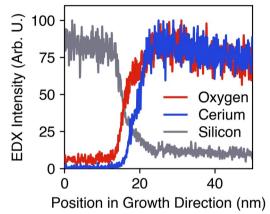
We can adjust the amount of Er in the CeO₂ film based on the Er cell temperature and the CeO₂ growth rate.

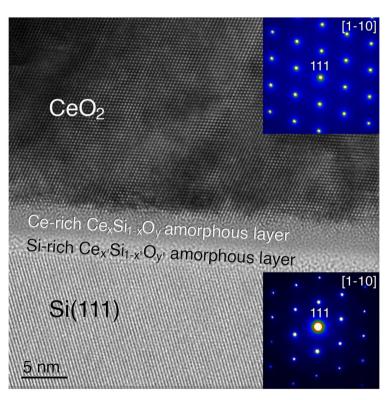
${ m CeO_2}$ Growth Rate $({ m nm/hr})$	$T_{\rm Er} = 800~{ m ^{\circ}C}$	$T_{\rm Er} = 900 {\rm ^{\circ}C}$	$\mid T_{ m Er} = 1000~{ m ^{\circ}C}$
$\mathrm{Rate}^-(\mathrm{nm/hr})$			
25	2.5 ppm	45 ppm	503 ppm
50	1.3 ppm	22 ppm	251 ppm
100	0.6 ppm	11 ppm	126 ppm
200	0.3 ppm	6 ppm	63 ppm

Er concentration impacts things like oxygen vacancy concentrations, and alters average Er-Er distances – leading to changes in ensemble interactions.

Er Doping Level (ppm)	1	10	100 (0.01%)	1,000 (0.1%)	10,000 (1%)
Mean Distance to Nearest Er (Å)	190	90	40	20	9

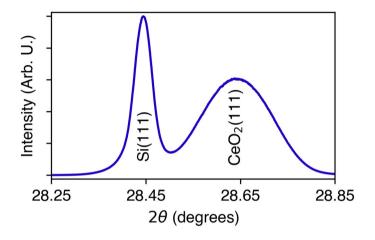
We have grown Er:CeO₂ thin films with 2-130 ppm Er, each 740-940 nm thick.

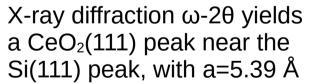

Microstructural analysis of Er:CeO₂

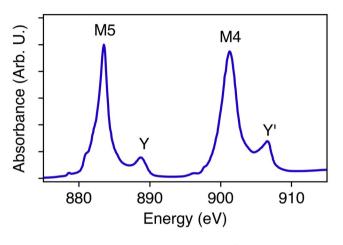


Lo-mag XTEM shows high concentration of threading dislocations, $\sim 3 \times 10^9$ per cm²

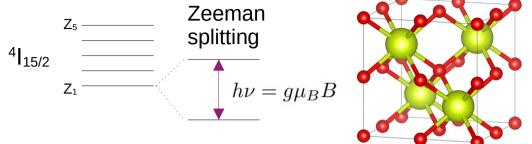
Hi-mag XTEM shows good epitaxial registry, but an amorphous mixed-oxide bilayer confirmed by EDX



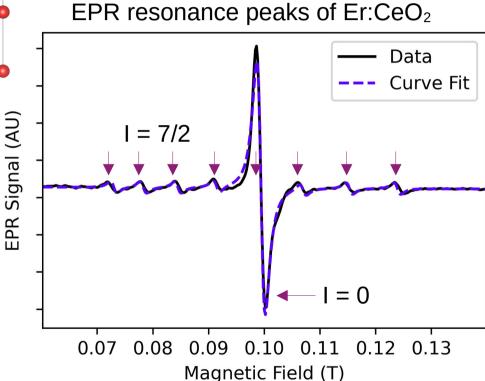

Microstructural analysis of Er:CeO₂



CeO₂(111) peak width agrees with lo-mag TEM


X-ray absorption Ce⁴⁺ spectrum (not Ce³⁺), confirming desired valency and therefore structure

Confirming integration of Er into CeO₂



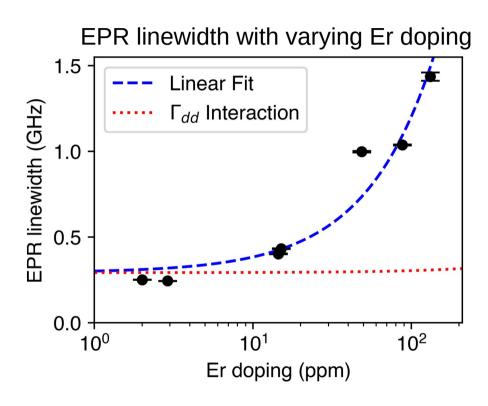
X-band electron paramagnetic resonance (EPR) of Er:CeO₂ at 3.5 K yields g-factor matching expected value for Er in a cubic O_h site.

$$g = 6.812 \pm 0.001$$

Hyperfine peak intensity matches natural abundance Er isotopes, and yields hyperfine splitting.

 $A = 686.5 \pm 1.3 \text{ MHz}$

Er-dependent spin linewidth broadening

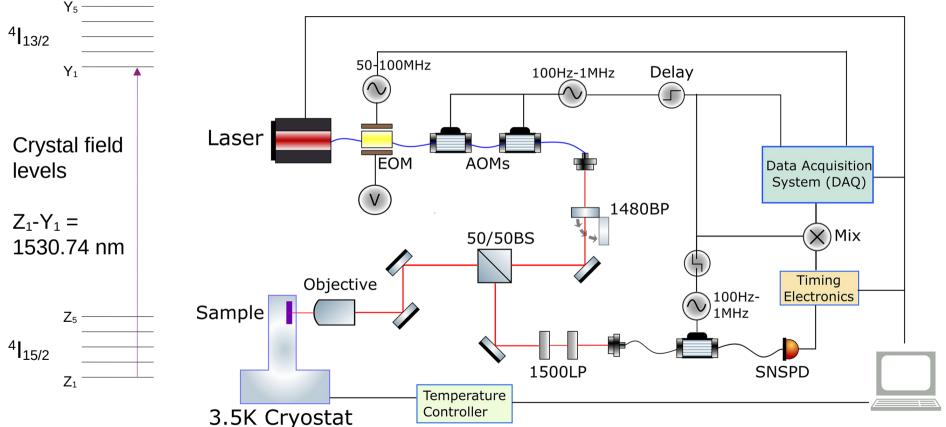

Grew Er:CeO₂ samples varied Er doping levels:

- All grown under the same conditions
- 2 ppm to 130 ppm
- Films between 740 and 940 nm thick

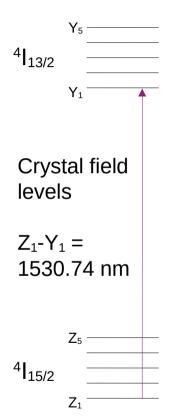
We track the linewidth of the spin resonance in EPR as a function of Er concentration.

Broadening observed in EPR linewidth is greater than Er-Er interactions alone. [1]

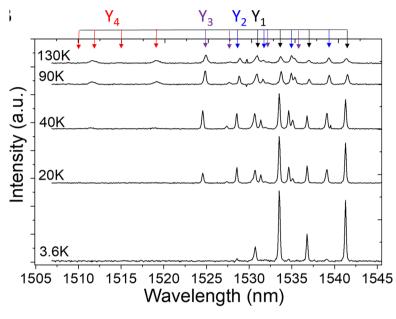
$$\Gamma_{\rm EPR} > \Gamma_{dd} = \frac{\pi}{9\sqrt{3}} \frac{\mu_0(g\mu_B)^2}{h} C$$



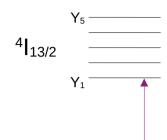
Setting up optical analysis of Er:CeO₂



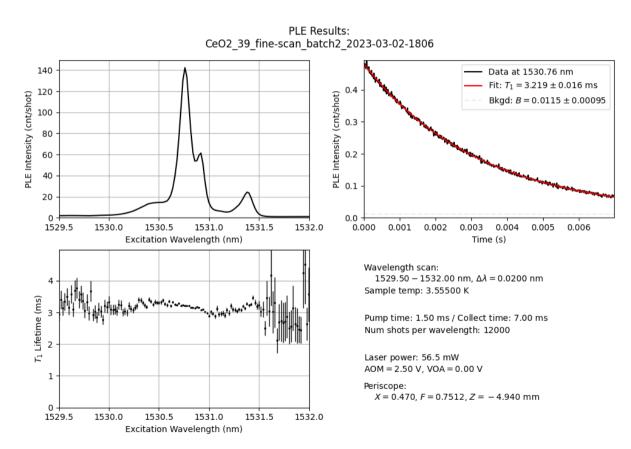
PL measurements of Er:CeO₂



Er^{3+}	Crystal	Level Energy	Transition	Transition	}
Level	Field	(meV)	Wavelength	Wavelength	
	Level	()	to Z_1 (nm)	to Y_1 (nm)	
$^{4}I_{13/2}$	Y_5	Not observed	l .		_
/-	Y_4	821.741	1508.8	,—	=
	Y_3	813.171	1524.7	_	0
	Y_2	811.097	1528.6	_	<u>:</u>
	Y_1	809.931	1530.7	1 1 - 1	neity
$^{4}I_{15/2}$	Z_5	Not observed		-	4
,	Z_4	5.517	_	1541.3	-
	Z_3	3.188	_	1536.8	
	Z_2	1.479	1-1	1533.6	
	Z_1	0	_	1530.7	
			•		


Raising sample temperature populates higher Z and Y levels, accessing new peaks in the PL spectrum.

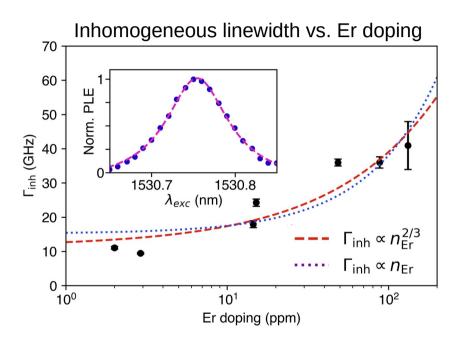
PLE measurements of Er:CeO₂


Crystal field levels

 $Z_1-Y_1 = 1530.74 \text{ nm}$

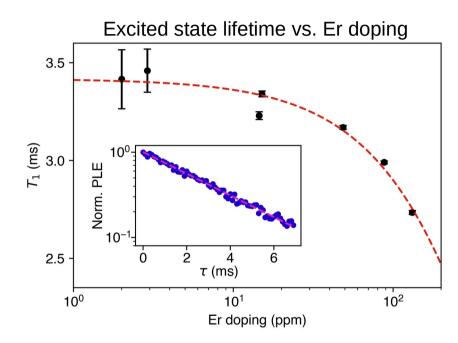
4_{15/2} Z₅ ______

Example PLE measurement of a 15 ppm Er:CeO₂ sample:


Sample is illuminated for 1.5ms; emission is collected after that.

Z₁-Y₁ PLE measurements of Er:CeO₂

Recall Er:CeO₂ doping series



~n^{2/3}: dipoles near charge defects

~n¹ : dipoles near dipoles, strain fields, or random electric fields

 T_1 reduction matches Inokuti-Hirayama (I-H) theory of nearby quenching defects [2], with more defects allowing more decay pathways

[1]: Stoneham, Rev. Mod. Phys., 41, 1 (1969)

[2]: Inokuti & Hirayama, *J. Chem. Phys.*, 43, 1978-89 (1965) Grant et al, *APL Materials*, 12, 021121 (2024)


Z₁-Y₁ spectral diffusion measurements

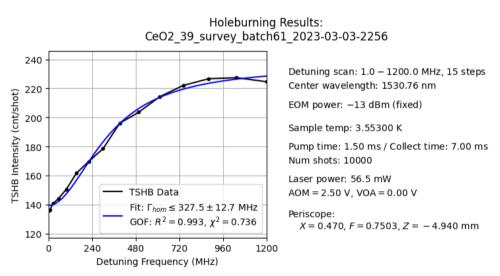
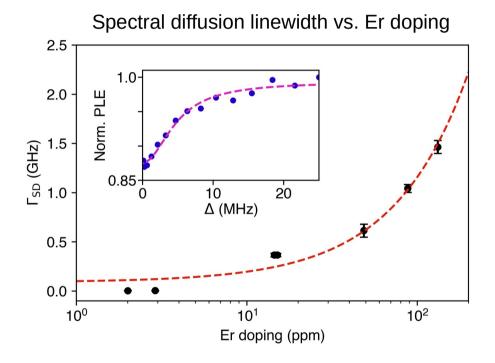


Diagram of transient spectral holeburning (TSHB) laser illumination

Laser sidebands are provided by a phase EOM placed prior to the AOMs



The resulting intensity profile yields the spectral diffusion linewidth, which bounds the homogeneous linewidth

Z₁-Y₁ spectral diffusion measurements

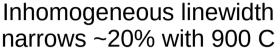
Spectral diffusion broadening is linear with increasing Er concentration.

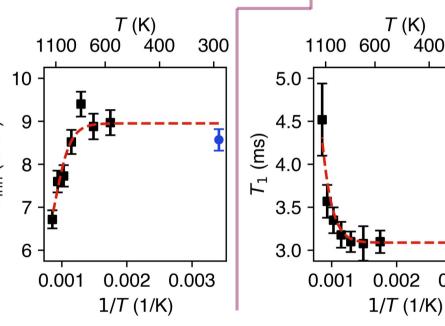
This is consistent with instantaneous spectral diffusion (ISD) due to Er-Er interactions.

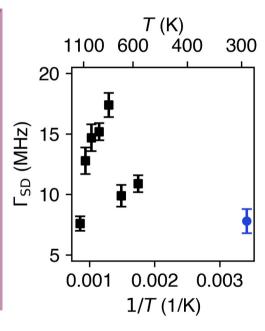
If we treat the minimum spectral diffusion linewidth of **5 MHz** as the worst-case homogeneous linewidth, then this implies a worst-case optical coherence time.

T_{2,opt} ≥ 63 ns

Improving optical properties via anneals



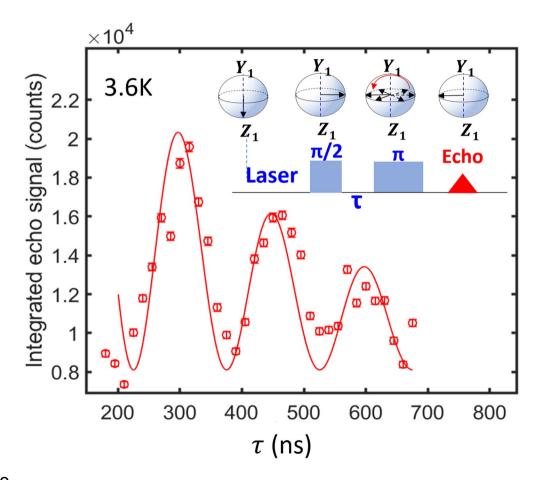



Tested 12-hour 20% O₂/Ar anneals on a 200 nm thick. 3 ppm Er:CeO₂ film

Substituting n_{Er} for a population of (GHz) thermallyannihilated defects extends PLE models for inhomogeneous linewidth and T₁, with an activation energy of 0.65-0.75 eV.

Spectral diffusion linewidth irregular with annealing

Excited state lifetime increases ~40% with 900 C


400

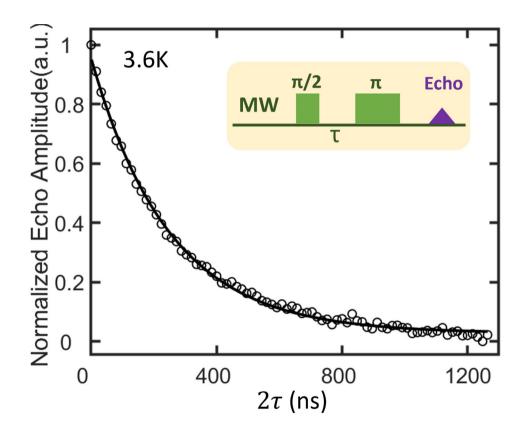
300

0.003

Test for optical echo in Er:CeO₂

We may use <u>photon echo</u> to probe the homogeneous linewidth, knowing that we have $T_{2,opt} \ge 63 \text{ ns} > \sim 50 \text{ ns}$.

We find a homogeneous linewidth of 440(20) kHz, or alternatively a coherence time of $T_{2,opt} = 720(30)$ ns.

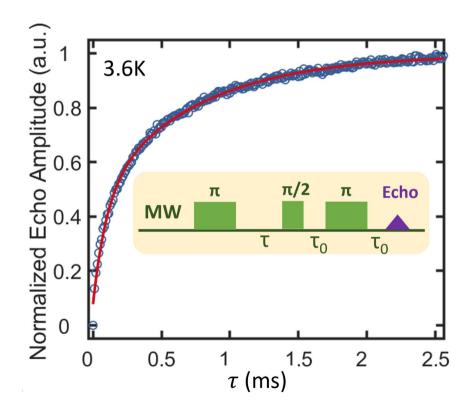

Broadening dominated by Orbach relaxation at these temperatures (~4 K).

Coherent beating occurs with a frequency of ~3 MHz.

$$I(\tau) \propto \exp\{-4\tau/T_2\}$$

Test for spin echo in Er:CeO₂

We may use <u>spin echo</u> to probe the coherence time of the spin transition as well.


Via spin (Hahn) echo, we find a coherence time of $T_{2,spin} = 249(35)$ ns.

(No coherent beating occurs here.)

$$I(\tau) \propto \exp\{-2\tau/T_2\}$$

Using spin echo to get spin lifetime

Prepending a pulse to the spin echo sequence gives us <u>inversion recovery</u>, which yields the spin lifetime as well.

Via inversion recovery, we find a double relaxation processes with spin lifetimes of:

$$T_{1,\text{spin},B} = 0.11(1) \text{ ms}$$

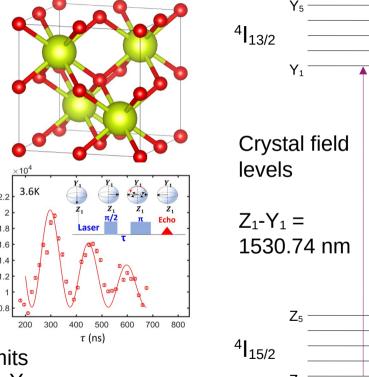
 $T_{1,\text{spin},B} = 0.83(4) \text{ ms}$

Optical measurements confirm the B process here is the lifetime of the spin split states in Z_1 .

Summary of Er:CeO₂ benchmarking

Er:CeO₂ provides a promising quantum memory platform at 3.5 K, particularly at low doping levels of 2-3 ppm Er.

EPR yields g = 6.81 ± 0.01 , A = 687 ± 1 MHz PLE of optical Z₁-Y₁ demonstrates, for as-grown samples: $\Gamma_{\text{inh}} = 9.5 \pm 0.2$ GHz $T_{1,\text{opt}} = 3.5 \pm 0.1$ ms


Oxygen anneals provide modest improvements to inhomogeneous linewidth and excited state lifetimes.

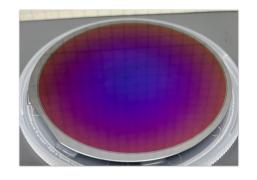
Spin echo and photon echo yield coherence times:

 $T_{2,spin} = 0.25 \pm 0.04 \ \mu s$ $T_{2,optical} = 0.72 \pm 0.03 \ \mu s$

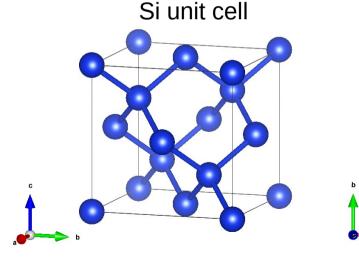
Next steps:

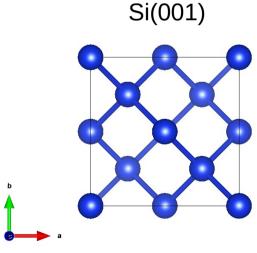
- Measurement at mK temperatures to identify coherence limits
- Nanophotonics cavities for Er:CeO₂ on SOI, to enhance Z₁-Y₁
- Lower Er doping to saturate Γ_{inh} , T_1 , and T_2 lower bounds

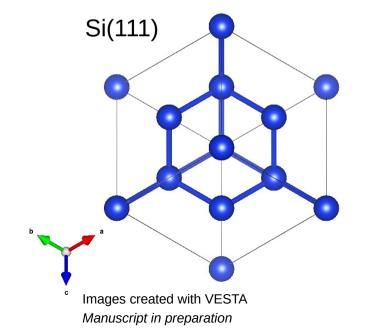
Grant et al, *APL Materials*, 12, 021121 (2024) Zhang et al, arXiv:2309.16785 (2023); in review with npjQI


Thesis Defense Outline

- 1. Discussion on selecting a quantum communication-relevant defect
- 2. Review of erbium energy structure and aspects relevant to our work
- 3. Developing CeO₂ as a host for Er
- 4. Expanding CeO₂ to other substrates for alternative integrations
- 5. Considering other host materials for Er via computational survey
- 6. Conclusions and final remarks


Silicon substrate orientations





Films may be grown on different substrate orientations.

Different orientations yields different growth behavior. Most semiconductor fabrication is on Si(001).

Growing Er:CeO₂ via MBE on (001)

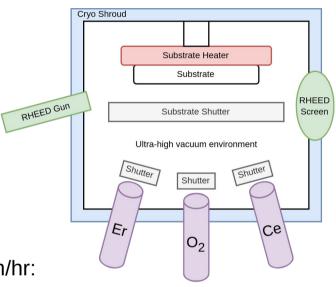
Molecular beam epitaxy (MBE) recipe:

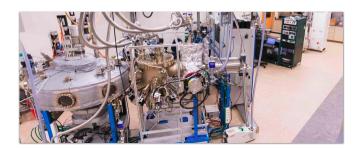
- 1. Start with base growth chamber pressure of 10⁻⁹ torr
- 2. Clean substrate

Si = RCA cleaned, HF last

SrTiO₃ (STO) = Acetone + IPA sonication

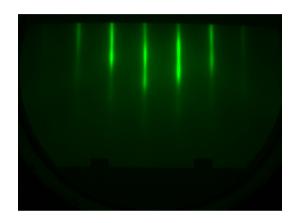
3. Prep substrate for growth

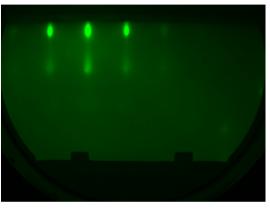

Si = Flash to 4x surface reconstruction


STO = 20 minutes plasma clean

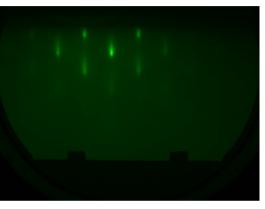
4. Evaporate high-purity cerium and erbium metal; flow oxygen

Attempted four growths, all with 10 ppm Er and grown at 50-70 nm/hr:


- On Si(111), 670 °C substrate
- On STO(001), 670 °C substrate
- On Si(001), 670 °C substrate
- On Si(001), room temperature substrate



Si(111) and STO yield epitaxial growth

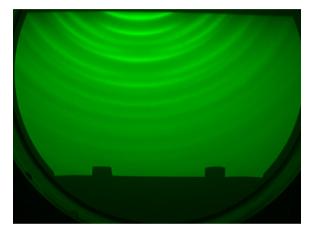


CeO₂(111) on Si(111)

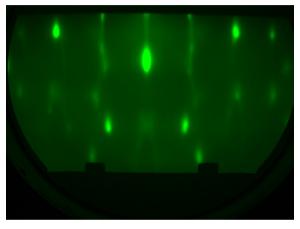
CeO₂(001) on STO(001), along STO<110> azimuth

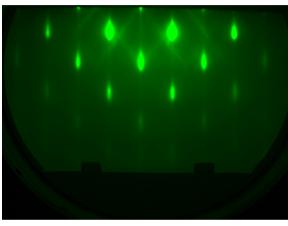
 $CeO_2(001)$ on STO(001), along STO<100> azimuth

These streaky patterns indicate single-crystalline, epitaxial growth.


The "standard" recipe developed for CeO₂ on Si(111) can work when growing CeO₂(001).

Si(001) yields subdivisions in CeO₂ films





Poly CeO₂ on Si(001), grown at room temp

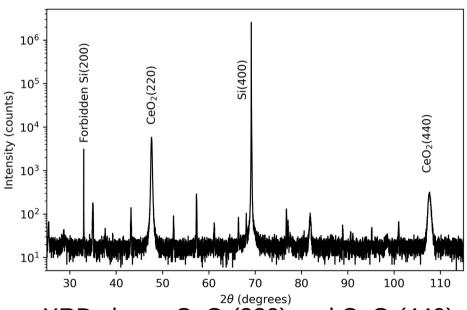
CeO2 on Si(001), along Si<100> azimuth

CeO2 on Si(001), along Si<110> azimuth

Room temperature growth yields polycrystalline CeO₂.

Standard growth conditions on Si(001) yields oddly partitioned streaky RHEED, with streak spacing matching either CeO₂(001) or CeO₂(011) growth.

SEM and XRD of CeO₂ on Si(001)



SEM shows small cross-hatched domains, indicating twinning

XRD shows $CeO_2(220)$ and $CeO_2(440)$ peaks, so we have $CeO_2(110)$ growth on Si(001).

How are optical properties on Si(001)?

Substrate	Growth Info	RHEED Pattern	$\Gamma_{\rm inh} ({\rm GHz})$	$T_1 \text{ (ms)}$	$\Gamma_{\rm SD}~({ m MHz})$
$\operatorname{Si}(001)$	Room-temp	Poly rings	No signal	_	_
Si(111)	Standard	Single streaks	16.8 ± 1.1	3.6 ± 0.1	328 ± 13
Si(001)	Standard	Multi streaks	28.9 ± 3.5	3.8 ± 0.1	450 ± 8
STO(001)	Standard	Single streaks	28.2 ± 0.3	5.3 ± 0.2	397 ± 7

We make the following observations for Er:CeO₂ grown on Si(001):

- Room temperature growth results in no activated Er
- Linewidths worsen when moving from Si(111) to Si(001)
- Linewidths on STO(001) and Si(001) are comparable despite multiple domains

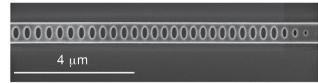
Next steps:

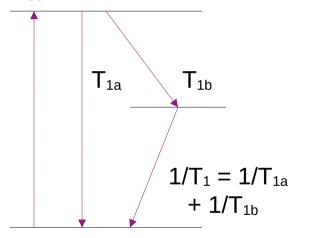
- Optimize CeO₂(001) growth window on STO(001)
- Investigate buffer layers for CeO₂(001) on Si(001), such as STO
- Investigate if roughness of CeO₂(011) films is low enough fabrication

Thesis Defense Outline

- 1. Discussion on selecting a quantum communication-relevant defect
- 2. Review of erbium energy structure and aspects relevant to our work
- 3. Developing CeO₂ as a host for Er
- 4. Expanding CeO₂ to other substrates for alternative integrations
- 5. Considering other host materials for Er via computational survey
- 6. Conclusions and final remarks

Shortening optical lifetimes of Er³⁺




Speeding up rare-earth emission would yield easier characterization measurements (e.g., PLE, g⁽²⁾), and eventually **higher quantum communication bandwidth**.

Option 1: Modify the local density of states

Nanophotonic devices, under development per, e.g., Alan Dibos' work. Option 2: Modify the available energy transitions

Adding defects yields extra relaxation channels (I-H theory). But, defects like this reduce photon yield and coherence.

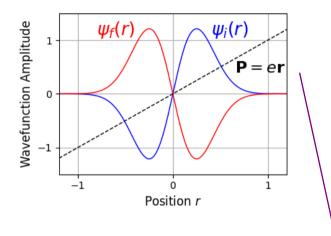
Option 3: Modify the intrinsic transition relaxation rate

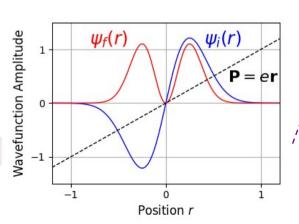
$$\frac{1}{T_1} \propto \left| \left\langle f \right| \boldsymbol{P} \left| i \right\rangle \right|^2$$

The transition relaxation rate increases as the matrix element of the transition operator **P** increases. This matrix element depends on the host environment.

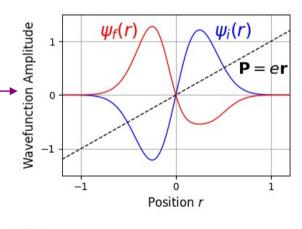
Electric dipole transitions **P**=e**r** are allowed if the initial and final states have different parity.

Parity mixing yields visible Er³⁺




Rare-earth free-ion states have the same parity when in the same configuration, causing forbidden electric dipole transitions (Ex: 4f-4f).

$$\int_{-\infty}^{\infty} \psi_f(r) r \psi_i(r) dr = 0$$


Electric dipole transitions are allowed if the initial and final states have different parity.

$$\int_{-\infty}^{\infty} \psi_f(r) r \psi_i(r) dr \approx 0.2$$

The **host crystal field** admixes higher states of different parity into the 4f states, weakly allowing electric dipole transitions.

$$\psi_f(r)r\psi_i(r)dr \approx 0.05$$

T₁ from electric dipole transition

Our goal is "brighter" Er from the ${}^4I_{13/2}$ to ${}^4I_{15/2}$ transition, defined by shorter T_1 excited state lifetimes in the ${}^4I_{13/2}$ states.

Calculating T_1 values:

- 1. Get T_1 by calculating the oscillator strength f.
- 2. Get f from the electric dipole operator matrix element D
- 3. Get *D* from the host crystal structure + Er structure

List of variables:

A = emission Einstein coefficient

 g_1 = ground state degeneracy

 g_2 = excited state degeneracy

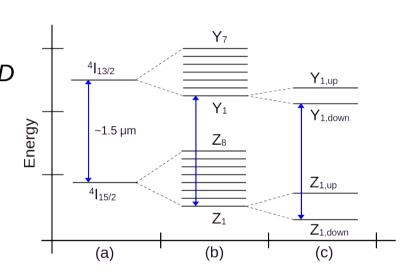
 ω = transition frequency

e = electron charge

 ϵ_0 = vacuum permittivity

m_e = electron mass

c = speed of light


n = refractive index

h = Planck constant

J = ground state total ang. mom.

$$\frac{1}{T_1} = A = \frac{g_1}{g_2} \frac{\omega^2 e^2}{2\pi \epsilon_0 m_e c^3} f$$

$$f = \frac{(n^2 + 2)^2}{9n} \frac{8\pi^2 m_e c}{3h(2J+1)} |D|^2$$

Clarifying the matrix element evaluation

The matrix element of the dipole operator $(D_{\rho}^{(1)} \sim r)$ is evaluated in the perturbed basis B, when transitioning from state B to state B' [1]:

(1):
$$\langle B|D_{\rho}^{(1)}|B'\rangle = \sum_{k,q, \text{ even }\lambda} (2\lambda + 1)(-1)^{q+\rho} A_q^{(k)} \begin{pmatrix} 1 & \lambda & k \\ \rho & -q-\rho & q \end{pmatrix} \langle A|U_{q+\rho}^{(\lambda)}|A'\rangle \Xi(k,\lambda)$$

We then compute the connection between the unperturbed states A and A'. The summation may be then be rephrased to clarify the role of different terms.

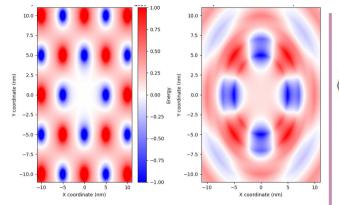
(2):
$$\langle B | D_{\rho}^{(1)} | B' \rangle = \sum_{k,q, \text{ even } \lambda} (2\lambda + 1)(-1)^{q+\rho} A_{q}^{(k)} \begin{pmatrix} 1 & \lambda & k \\ \rho & -q - \rho & q \end{pmatrix} \langle A | U_{q+\rho}^{(\lambda)} | A' \rangle \Xi(k,\lambda)$$

$$\langle B | D_{\rho}^{(1)} | B' \rangle = \sum_{k,q} A_{q}^{(k)} \times \left[\sum_{\text{even } \lambda} (2\lambda + 1)(-1)^{q+\rho} \begin{pmatrix} 1 & \lambda & k \\ \rho & -q - \rho & q \end{pmatrix} \langle A | U_{q+\rho}^{(\lambda)} | A' \rangle \Xi(k,\lambda) \right]$$

And with this re-contextualization we can define a new summation that is the element-wise multiplication of an Er-specific set of constants with the crystal field coefficients.

(3):
$$\langle B | D_{\rho}^{(1)} | B' \rangle = \sum_{k,q} \frac{A_{q}^{(k)}}{q} \lambda_{kq,\rho} , \qquad \lambda_{kq,\rho} = \sum_{\text{even } \lambda} (2\lambda + 1)(-1)^{q+\rho} \begin{pmatrix} 1 & \lambda & k \\ \rho & -q - \rho & q \end{pmatrix} \langle A | U_{q+\rho}^{(\lambda)} | A' \rangle \Xi(k,\lambda)$$

Computing the crystal field coefficients



The crystal field coefficients $A_q^{(k)}$ arise from the expansion of a spatially-varying potential in the spherical harmonics.

$$H_3 = \sum_{k,q} A_q^{(k)} r^k C_q^{(k)}(\theta,\phi)$$

Recall:

$$\langle B|D_{\rho}^{(1)}|B'\rangle = \sum_{k,q} A_{q}^{(k)} \lambda_{kq,\rho}$$

$$C_q^{(k)} = \left(\frac{4\pi}{2k+1}\right)^{1/2} Y_{kq}$$

Hutchings (1964) [1] and Wybourne (1965) [2] provide an analytical solution for getting A_{kq} from a field of point charges.

The crystal field potential upon an evaluation charge Q_e caused by a field of ions with charge Q_i at locations \mathbf{R}_i is expanded in terms of the spherical harmonics $C_q^{(k)}$, yielding the crystal field coefficients $A_q^{(k)}$.

$$A_q^{(k)} = \frac{1}{4\pi\epsilon_0} \sum_i \frac{Q_e Q_i}{R_i^{k+1}} (-1)^q C_{-q}^{(k)}(\Theta_i, \Phi_i)$$

(This solution assumes no charge density of Q_i coming within the Er³⁺ electron radial wavefunctions.)

[1]: Hutchings, Solid State Physics, 1964.

[2]: Wybourne, "Spect. Prop. of Rare Earths," 1965

Workflow from Materials Project to |D|

(1) Search for all material structures with a bandgap of >0.8 eV [58,084 structures]

(2) Identify oxidation solutions and Er settings for each structure [~350k settings]

(3) Compute A_{kq} for each Er setting

(4) Compute |D| for each A_{kq}

(5) Compute f for each |D|

The Materials Project database allows for rapid processing of materials structures for identifying crystal hosts.

(1) In our initial search the only filter we apply is a bandgap of >0.8 eV, to facilitate our Er³⁺ \sim 1.5 μ m transition.

Later post-processing filtering may include, for example, selecting materials with constituent elements that must be enrichable to nuclear spin zero, to facilitate high spin coherence. [1]

(2a) Multiple oxidation solutions result from ambiguous oxidation states. For example, V_2NiO_6 could have V^{5+} and Ni^{2+} or V^{4+} and Ni^{4+} . We evaluate both of these cases.

(2b) Multiple settings arise from varying site symmetries and oxidation environments that Er^{3+} can reside in. For example, Y_2O_3 has two inequivalent Y^{3+} sites with C_2 and C_{3i} symmetry.

Initial results from materials survey

(1) Search for all material
structures with a bandgap of
>0.8 eV [58,084 structures]

(2) Identify oxidation solutions and Er settings for each structure [~350k settings]

(3) Compute A_{kq} for each Er setting

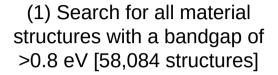
(4) Compute |D| for each A_{kq}

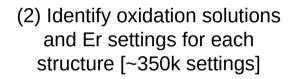
(5) Compute f for each |D|

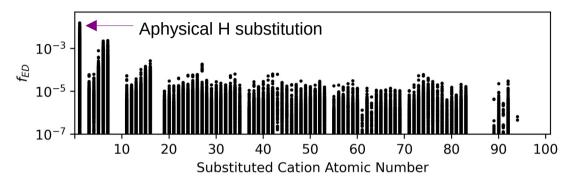
Material	Er Site Info	f _{el,calc}	f _{el,lit} [1]
LiNbO ₃	Li site	2e-6	1e-6
LiYF ₄	Li site	2e-7	2e-7
Y ₂ SiO ₅	O-6 Y site	2e-7	3e-7
Y ₂ SiO ₅	PB-7 Y site	9e-8	2e-8
CaWO ₄	Ca site	2e-7	2e-8

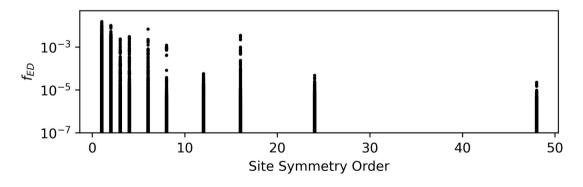
Preliminary agreement between calculations and literature. Tendency of the calculation to overestimate f_{el}.

Recall that no fit parameters are involved here.


Note that $f \sim 1e-6$ yields a T_1 around 1 millisecond.

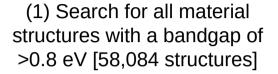

Initial trends from materials survey

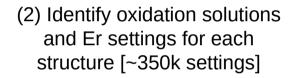


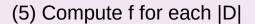


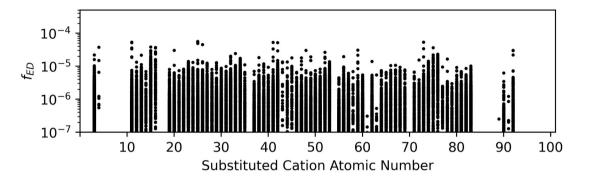
(4) Compute |D| for each A_{kq}

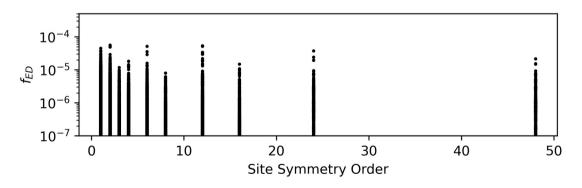
(5) Compute f for each |D|


Each dot is one possible Er setting. Higher *f* means brighter Er.

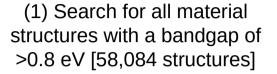

Initial trends from materials survey

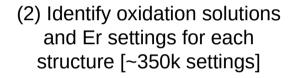


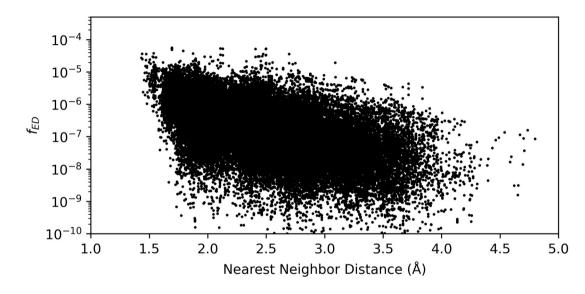




(4) Compute |D| for each A_{kq}


Each dot is one possible Er setting. Higher *f* means brighter Er.


Learning rules of thumb from survey



(4) Compute |D| for each A_{kq}

(5) Compute f for each |D|

Correlation (Pearson r=-0.3) between nearest neighbor distance and oscillator strength (recall higher = brighter).

Parameters that do not show clear trends in brightness (here, |r|<0.1): Site symmetry order, substituted atomic number, material formation energy, material mass density

Material candidates from survey

(1) Search for all material structures with a bandgap of >0.8 eV [58,084 structures]

(2) Identify oxidation solutions and Er settings for each structure [~350k settings]

(3) Compute A_{kq} for each Er setting

(4) Compute |D| for each A_{kq}

(5) Compute f for each |D|

Material	Er Site Info	f el,calc
NaTaN ₂	Na or Ta site	5.3e-5
MoS ₂	Mo site	5.2e-5
Be₂C	Be site	3.8e-5
AIN	Al site	2.2e-5
CeO ₂	Ce site	6.9e-6
Y ₂ O ₃	C ₂ Y site	1.1e-6
Rutile TiO ₂	Ti site	7.2e-7
Anatase TiO ₂	Ti site	2.1e-7
Y ₂ O ₃	C _{3i} Y site	1.6e-7

Current status and next steps

(1) Search for all material
structures with a bandgap of
>0.8 eV [58,084 structures]

(2) Identify oxidation solutions and Er settings for each structure [~350k settings]

(3) Compute A _{kq}	for each	Er setting

(4) Compute $ D $ for each A_{kq}		
(5) Compute f for each D		

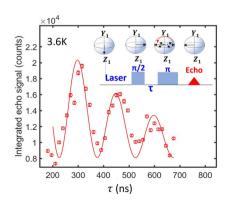
Material	Er Site Info	f el,calc
NaTaN ₂	Na or Ta site	5.3e-5
MoS ₂	Mo site	5.2e-5
Be₂C	Be site	3.8e-5
AIN	Al site	2.2e-5

- 1) Account for refractive index in calculations, likely using dielectric constant ϵ^{∞} where available in Materials Project
- 2) Compute for specific transitions, e.g., Y_1 to Z_1
- 3) Identify methods to account for Er-substitution-induced strain
- 4) Obtain bulk samples of promising materials for experimental doped Er brightness characterization
- 5) Combine with nanophotonics for high-bandwidth Er defect engineering, up to the 100 kHz 1 MHz range

Thesis Defense Outline

- 1. Discussion on selecting a quantum communication-relevant defect
- 2. Review of erbium energy structure and aspects relevant to our work
- 3. Developing CeO₂ as a host for Er
- 4. Expanding CeO₂ to other substrates for alternative integrations
- 5. Considering other host materials for Er via computational survey
- 6. Conclusions and final remarks

Conclusions and Final Remarks



Er:CeO₂ is a promising quantum memory platform at 3.5 K, particularly at low doping levels of 2-3 ppm Er.

Oxygen anneals provide modest improvements.

Spin echo and photon echo yield coherence times:

 $T_{2,spin} = 0.25 \pm 0.04 \mu s$ $T_{2.optical} = 0.72 \pm 0.03 \mu s$

We may grow CeO₂(110) on Si(100), and its optical properties are no worse than on STO(001) except for shorter T₁.

This may make way for **new** routes to Er:CeO₂ devices, namely on SOI.

Via high-throughput computational survey, we have found additional viable hosts for Er that target higher optical bandwidth.

Material	f _{el,calc}
NaTaN ₂	5.3e-5
MoS ₂	5.2e-5
Be₂C	3.8e-5
AIN	2.2e-5

Thank you for attending my thesis defense!

Thank you to everyone at the Guha Lab, Quantum Materials Lab, Freeland Lab, and others at Argonne!

Prof. Awschalom

Dr. Heremans

Dr. Dibos

Dr. Zhang

Dr. Sautter-Montoya

Dr. Chattaraj

Mr. Masiulionis

And thank you to all of my family and friends for your support during this marathon!

Gregory Grant Thesis Defense Sept. 13, 2024

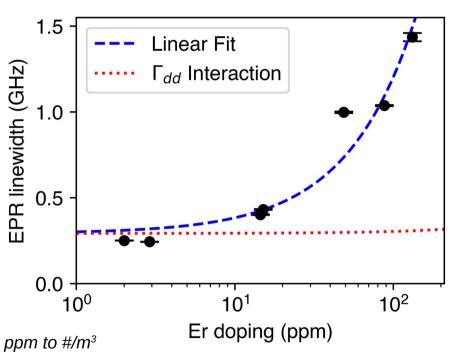
Appendix Slides

EPR Linewidth Supplemental

Hamiltonian for two spins with dipolar interaction

$$H = \frac{g_1 \mu_B}{2} \boldsymbol{\sigma}_1 \cdot \boldsymbol{B} + \frac{g_2 \mu_B}{2} \boldsymbol{\sigma}_2 \cdot \boldsymbol{B} - \frac{\mu_0 g_1 g_2 \mu_B^2}{8\pi |\boldsymbol{r}|^3} \left(3(\boldsymbol{\sigma}_1 \cdot \hat{\boldsymbol{r}})(\boldsymbol{\sigma}_2 \cdot \hat{\boldsymbol{r}}) - \boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2 \right)$$

Energy shift on spin 1 due to dipolar interaction with spin 2


$$\epsilon(\mathbf{r}, \pm) = \pm 2\gamma = \pm \frac{\mu_0 g_1 g_2 \mu_B^2}{4\pi |\mathbf{r}|^3} (3\cos^2 \theta - 1)$$

Linewidth (Lorentzian, in Hz) due to an ensemble of interacting spins with g-factor g and concentration C (#/m³)

$$\Gamma_{\rm EPR} > \Gamma_{dd} = \frac{\pi}{9\sqrt{3}} \frac{\mu_0 (g\mu_B)^2}{h} C \quad \begin{array}{l} \mu_{\rm 0} = \text{1.256637e-6 T}^2\text{m}^3\text{/J} \\ \mu_{\rm B} = \text{9.27401e-24 J/T} \\ \text{h} = \text{6.62607e-34 J/Hz} \end{array}$$

Sanity check: g=2 and C=10¹⁸ cm⁻³ should yield ~132 kHz Indeed, yields 131.5 kHz! (exercise from Geschwind)

For 10 ppm in CeO₂: g=6.812, C=7.6x10¹⁷ cm⁻³ **10 ppm yields** Γ_{d-d} = **1.15 MHz, 100 ppm yields 15.2 MHz**

decimal = ppm/1e6 CeO_2 atoms/m³ = 12 / (5.411e-10 m)³ = 7.57e28 atoms/m³ ppm = decimal * 7.57e28 Er/m³ (or: decimal * 7.57e22 Er/cm³)

Ex: 10 ppm = $(10/1e6) * 7.57e28 m^{-3} = 7.57e17 cm^{-3}$

Cubic locations in the CeO₂ lattice

There are three intrinsic disorder processes in CeO_2 , and three extrinsic disorder processes incorporating M_2O_3 that yield from those intrinsic processes. (Minervini et al, 1998, Solid State Ionics)

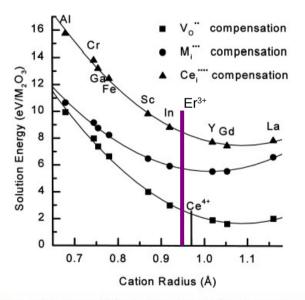
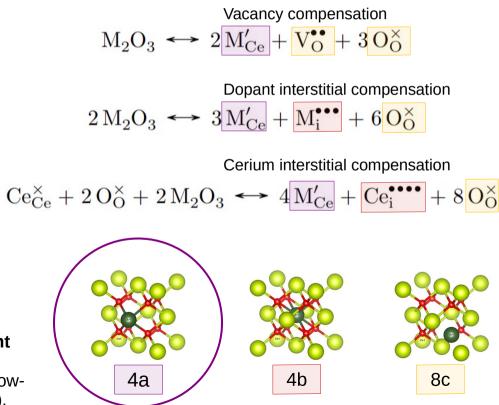
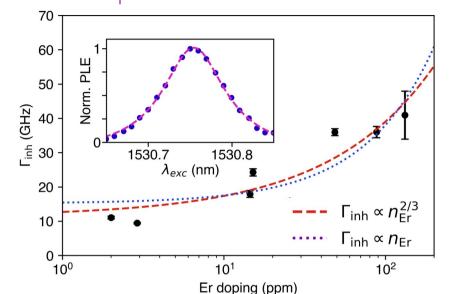



Fig. 1. Solution energies for the incorporation of $\rm M_2O_3$ into $\rm CeO_2$ assuming isolated point defects.

If vacancy compensation dominates, then the trivalent dopant preferentially substitutes into the Ce site (4a) instead of the interstitial site (4b). Experimental work in low-doped Fe³⁺:CeO₂ verifies this (Bao et al. 2008, Catal Lett).



Stoneham's equations supplemental

$$I(\omega) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} d\rho \exp\{-ix\omega\} (1 - J/V)^{N}$$

$$J = \int^{V} (1 - \exp\{ix\epsilon(z)\}) p(z) dz$$

REVIEWS OF MODERN PHYSICS

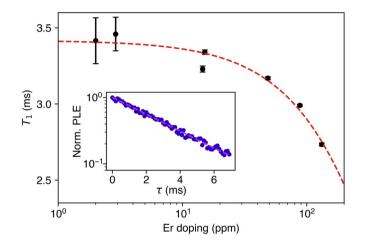
VOLUME 41, NUMBER 1

JANUARY 1969

Shapes of Inhomogeneously Broadened Resonance Lines in Solids

A. M. STONEHAM

Theoretical Physics Division, Atomic Energy Research Establishment, Harwell, Berkshire, England


Inhomogeneous broadening has been observed in resonance lines in solids over the wide range of energies spanned by nuclear magnetic resonance, electron spin resonance, optical, and Mössbauer methods. The broadening arises from random strains, electric fields, and other perturbations from the defects in the lattice containing the centre whose transitions are studied. This paper reviews the calculation of the shapes of such resonance lines. The most important method

Inokuti-Hirayama supplemental

$$\phi(t) = \phi_0 \exp\left[-\frac{t}{T_1^{(0)}} - \Gamma\left(1 - \frac{3}{v}\right) \frac{n}{n_0} \left(\frac{t}{T_1^{(0)}}\right)^{3/v}\right]$$

$$T_1 = \int_0^\infty t \phi(t) dt / \int_0^\infty \phi(t) dt$$

THE JOURNAL OF CHEMICAL PHYSICS

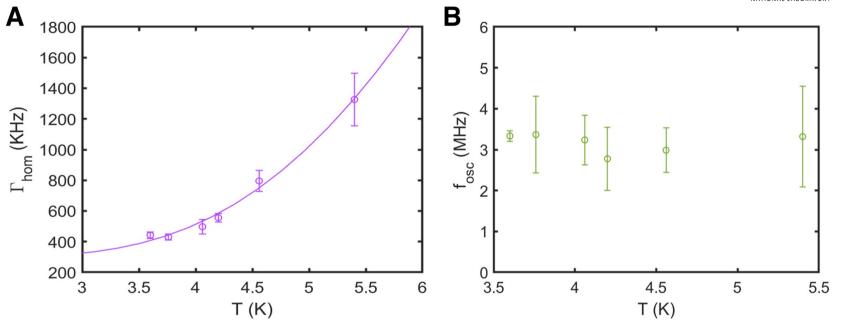
VOLUME 43, NUMBER 6

15 SEPTEMBER 1965

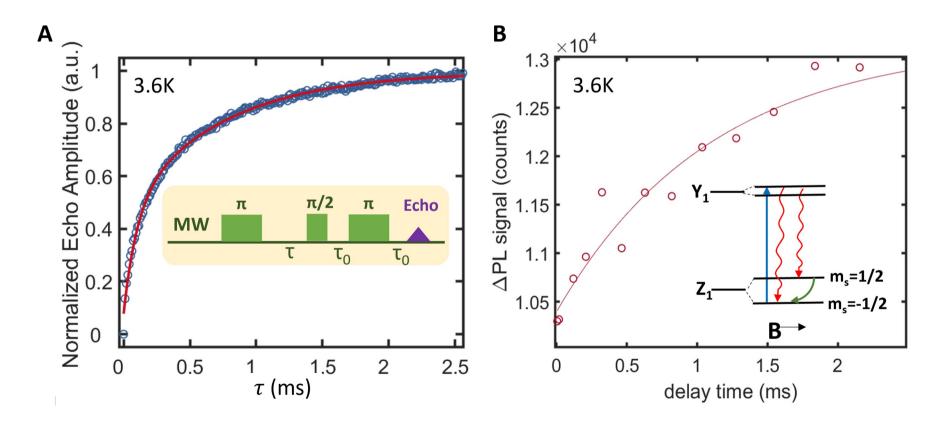
Influence of Energy Transfer by the Exchange Mechanism on Donor Luminescence*

MITIO INOKUTI AND FUMIO HIRAYAMA†

Argonne National Laboratory, Argonne, Illinois
(Received 17 May 1965)


The decay of donor luminescence in a rigid solution when modified by electronic energy transfer by the exchange mechanism is treated theoretically. The rate constant for the elementary process of energy transfer

Optical echo vs temperature details



We see broadening of the optical homogeneous linewidth as a function of temperature, but the coherent beating does not change frequency.

$$\Gamma_{\text{hom}}(T) = \Gamma_0 + \alpha_{\text{TLS}}T + \alpha_{\text{phonon}} \exp\{-\Delta E/k_B T\}$$

Optical spin T₁ measurements

Electric dipole matrix elements

The matrix element of the dipole operator $(D_{\rho}^{(1)} \sim r)$ is evaluated in the crystal field-perturbed basis B, when transitioning from state B to state B', as shown here in (1). Judd (1962) [1] lays this out.

(1):
$$\langle B | D_{\rho}^{(1)} | B' \rangle = \sum_{k,q, \text{ even } \lambda} (2\lambda + 1)(-1)^{q+\rho} A_q^{(k)} \begin{pmatrix} 1 & \lambda & k \\ \rho & -q - \rho & q \end{pmatrix} \langle A | U_{q+\rho}^{(\lambda)} | A' \rangle \Xi(k,\lambda)$$

We then need to compute the connection between the unperturbed states A and A', using definitions available in Wybourne (1965). The reduced matrix elements at the end may be looked up in, e.g., Nielson & Koster (1963).

$$\begin{aligned} \textbf{(2)}: & \langle A|\,U_{q+\rho}^{(\lambda)}\,|A'\rangle = \sum_{M,M'} a_M a_{M'}\, \left\langle l^N \gamma S L J M\, \middle|\,U_{q+\rho}^{(\lambda)}\, \middle|\,l^N \gamma' S' L' J' M'\right\rangle \\ & \left\langle l^N \gamma S L J M\, \middle|\,U_{q+\rho}^{(\lambda)}\, \middle|\,l^N \gamma' S' L' J' M'\right\rangle = (-1)^{J-M+S+L+J'+\lambda} \sqrt{(2J+1)(2J'+1)} \\ & \times \begin{pmatrix} J & \lambda & J' \\ -M & q+\rho & M' \end{pmatrix} \left\{ \begin{matrix} J & J' & \lambda \\ L' & L & S \end{matrix} \right\} \left\langle l^N \gamma S L\, \middle|\,|\,U^{(\lambda)}\, \middle|\,|\,l^N \gamma' S' L'\right\rangle \end{aligned}$$

Finally, the evaluation of the term Ξ at the end of (1) is provided by Judd; he also includes radial wavefunction integral expressions and energies for Er^{3+} .

(3):
$$\Xi(k,\lambda) = 2\sum_{n',l'} (2l+1)(2l'+1)(-1)^{l+l'} \begin{cases} 1 & \lambda & k \\ l & l' & l \end{cases} \begin{pmatrix} l & 1 & l' \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} l' & k & l \\ 0 & 0 & 0 \end{pmatrix} \frac{\langle nl| \, r \, |n'l' \rangle \, \langle nl| \, r^k \, |n'l' \rangle}{\Delta(n'l')}$$